
PHYSICAL REVIEW E JUNE 1997VOLUME 55, NUMBER 6
General method of synchronization
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We discuss a general approach for chaotic synchronization of dynamical systems that is based on adjusting
the response-system parameter. Numerical simulation shows that this method is robust against external noise.
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I. INTRODUCTION

Since 1990 chaos synchronization has been a topic
great interest. Pecora and Carroll@1# considered how identi-
cal or almost identical chaotic systems can be synchron
by a chaotic reference signal so that the two systems fol
the same chaotic orbit. He and Vaidya@2# showed how this
synchronization can be understood in many representa
cases by the existence of a global Lyapunov function of
difference signals.

Usually two dynamical systems are called synchronize
the distance between their states converges to zero
t→`. Recently @3,4#, a generalization of this concept fo
unidirectionally coupled systems was proposed, where
systems are called synchronized if a function relation ex
between the states of both systems. On the other hand,
@5# points out that when all exponents are negative, exc
for a few that take a zero value, one may find cases in wh
the copy of the subsystem reproduces the original despite
fact that the distance between the two subsystems does
converge to zero. A zero conditional Lyapunov expon
would mean that the distance between the drive and resp
remains constant on average. It allows other possibilities
may be of interest from the scientific and technical points
view, for example, the amplification of the drive attract
and the shift of it to a different region of phase space.

One possible use of the ability to synchronize chaotic s
tems is in secure communications@6#. A sender of informa-
tion might add a very large chaotic component to t
information-containing signal, thus masking the informati
in the signal from any third party who intercepts it. Anoth
way @7# of using chaos in communication is to control th
dynamics of a chaotic oscillator so that it follows a giv
sequence in its symbolic dynamics. Since this sequence
be controlled, it can be used to transmit information. R
cently, Kocarev and co-workers@8,9# presented a genera
approach for chaotic synchronization of dynamical syste
The basic idea of the synchronization approach consists
decomposition of a given~chaotic! system into an active an
a passive part, where different copies of the passive
synchronize when driven by the same active compon
This approach improves the encoding-decoding schemes
551063-651X/97/55~6!/6651~5!/$10.00
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allows us to recover the information signal exactly.
Reference@1# gives a listing of the various subsystem

and driving components for the Lorenz and Ro¨ssler systems
and their sub-Lyapunov exponents; see Table I.

From this table we know that the Ro¨ssler system canno
be synchronized when one choses (y,z) or (x,y) as the re-
sponse system because it has positive sub-Lyapunov e
nents; for the Lorenz system, the response system (x,y) can-
not be synchronized. If one can change the positive s
Lyapunov exponents into negative ones, then
synchronization of the response system can be implemen
References@10,11# use a small feedback perturbation
change the positive sub-Lyapunov exponents into nega
ones and implement the synchronization.

Reference@12# uses a nonlinear feedback to do the sa
thing. In this paper, we present two approaches to implem
the synchronization of response systems that cannot be
chronized in@1#. One changes the positive sub-Lyapun
exponents to negative by both using the drive variable
adjusting the parameter of the response system, or only
adjusting the parameter of the response system. The ad
ing parameter range is given by calculating the su
Lyapunov spectra. It is necessary to point out that o
method is different from Lai and Grebogi’s method@13#,
which is based on the idea of controlling chaos by Ott, G
bogi, and Yorke@14#. Our method applies the Routh-Hurwit
stability criterion to determine the variation of the paramet

II. METHOD

Consider a genaral dynamical model that displays cha
behavior:

TABLE I. Subsystems and driving components for the Lore
and Rössler systems and their sub-Lyapunov exponents.

System Drive Response Sub-Lyapunov expone

Rössler x (y,z) ~10.2,28.89)
a50.2,b50.2 y (x,z) (20.056,28.81)
c59.0 z (x,y) ~10.1,10.1!
Lorenz x (y,z) (21.81,21.86)
s510, b58/3 y (x,z) (22.67,29.99)
g560.0 z (x,y) (10.0108,211.01)
6651 © 1997 The American Physical Society
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xi̇5 f i~x,ai ! i51, . . . ,n, ~1!

whereai is the parameter of system andn>3. Equation~1!
is now taken as the driving system. One of the system v
ablesxi may be chosen to be a drive signal, while the
maining variables can be duplicated as a response~driven!
system. The global system consists of both the driving
the driven systems, linked by the drive signal. If we usexj as
the drive variable, the response system consists
x1 , . . . ,xj21 ,xj11 , . . . ,xn . Generally speaking, the eigen
values of the Jacobian matrix of the response system ca
all be negative, so the behavior of the response system
not always be synchronized with that of the driving syst
by Pecora and Carroll’s method@1#. To solve this problem
we adjust the parameterai of the response system as

ai5aī2e i~xi2xiap!, ~2!

whereaī is the nominal value ofai , e i is the control coef-
ficient, xi is the orbit of the response system, andxiap is the
orbit of the driving system. The eigenvaluesl(x) of the
Jacobian matrix of the response system satisfies

I ] f i
]xk

1
] f i
]ai

]ai
]xk

2d ikl~xap!I50 ~ i ,k51, . . . ,n; i ,kÞ j !,

~3!

wherel(xap) is related to the trajectory of the driving sy
tem, d ik is the Kronecker delta function, and] f i /]xk and
(] f i /]ai)(]ai /]xk) are evaluated atx5xap andai5aī . We
know that the Lyapunov exponent that represents the c
acter of the system is a long time average quantity along
orbits of the system. If we choose a suitablee i in Eq. ~2! so
that all thel(xap) along the trajectory are negative, the su
Lyapunov exponents of the response system will be nega
Synchronization can be achieved.

For the case of no drive variable, the response system
the form of Eq.~1!. Now we also adjust the parameterai of
the response system as in Eq.~2!; then Eq.~3! becomes

I ] f i
]xk

1
] f i
]ai

]ai
]xk

2d ikl~xap!I50 ~ i ,k51, . . . ,n!, ~4!

The question is how we choose a suitablee i in Eq. ~2! so that
all thel(xap) of Eq. ~4! along the orbits become negative

The problem of determining the rootsl(xap) of Eq. ~3!
whenn>4 and the rootsl(xap) of Eq. ~4! whenn>3 can
become tedious at best. Fortunately, what is required is
these roots, but simply the region ofe i in which all the roots
l(xap),0. The answer to this problem is well known an
does not require a knowledge of the rootsl(xap). The char-
acteristic equation~3! or ~4! is a polynomial equation o
ordern in l,

a0l
n1a1l

n211•••1an50 ~a051!. ~5!

A necessary and sufficient condition for all roots of E
~5! to have negative real parts is that

a2k.0, D2k11.0 ~k50,1, . . .!
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a2k11.0, D2k.0, ~6!

whereD i(a1 , . . . ,ai) are the so-called Hurwitz determinan
of order i . These conditions are referred to as the Rou
Hurwitz stability criteria. From these criteria we can dete
mine the control coefficiente i . We give some examples t
explain the process of synchronizing in detail.

III. NUMERICAL EXPERIMENTS

A. Rössler model

For the Ro¨ssler system

ẋ52y2z, ~7a!

ẏ5x1ay, ~7b!

ż5b1z~x2c! ~7c!

we considerz as the drive variable; then the response syst
is

ẋ52y2z, ẏ5x1ay. ~8!

Let

a5 ā2e~y2yap!, ~9!

where ā is the nominal value of the parametera, yap is the
aperiodic orbit of drive system, andy is the orbit of response
system. When synchronization is implemented,y 5 yap and
a 5 ā . According to Ref. @1#, we set a5b50.2 and
c59.0. The Jacobian of the response system is

S 2l 21

1 ā2yape2l
D 50, ~10!

wherel is the eigenvalue of the Jacobian of the respo
system. By requiringl1,2,0, one has

ueu.
21 ā

yap
. ~11!

To avoid too largee, we let the response system run free
when uyapu<0.1, that is,

e5H 21a1k1
yap

if uyapu.0.1

0 otherwise.

~12!

Herek1.0 is the adjusting parameter. In our synchronizin
we setk150.1; the initial point of the drive system is~5.0,
210.0,0.03! and the initial point of the response system
~0.1,26.0,0.03!. The driving and response systems ha
been integrated by using a stable fixed-step fourth-or
Runge-Kutta method with a step size oft50.01 time units.
Figure 1 shows the result of synchronization. To determ
the range of the adjusting parameterk1, we now investigate
the larger sub-Lyapunov exponent spectra of the respo
system. The sub-Lyapunov exponentsl(k) are defined by
variational equations of the response system



f

tiv
b
q
er

f
t
g
th
iv
g

-
o
b

der
g.

pa-

at

e

o
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d ẋ52dy, d ẏ5dx1ady, ~13!

l5 lim
t→`

1

t
ln

Ad2x1d2y

Ad2x~0!1d2y~0!
. ~14!

Here dx5x2xap and dy5y2yap define the deviations o
the response system from the aperiodic orbit, determined
the drive system. The necessary and sufficient condition
synchronization of the two systems isl,0. Denoting
e5k/yap whenuyapu.0.1 ande50 whenuyapu<0.1, we get
the larger sub-Lyapunov spectrum as in Fig. 2. It is nega
whenk varies from 0.1 to 100, so the synchronization can
implemented in this range. Comparing this range with E
~11!, we can find that they are different. The range det
mined by Eq.~11! is contained in that of Eq.~14! which is
less than zero. This is because Eq.~11! needs every step o
the response system to approach the aperiodic orbit of
drive system, while Eq.~14! is an average effect over lon
times. It confirms that all the sub-Lyapunov exponents of
range determined by the Routh-Hurwitz criteria are negat

For the case of no drive variable, we should find the ran
of adjusting parameter by Eqs.~4! and~6!. But in this special
example, we can still use Eq.~11! to implement the synchro
nization for the following reason. Checking the trajectory
the Rössler system in phase space, we find that the varia
z is always positive and the variablex varies between

FIG. 1. Synchronization of the Ro¨ssler system usingz as the
drive variable and the subsystem (x,y) as the response system
the parametersa5b50.2 andc59.0. The initial point of the driv-
ing system is~5.0,210.0,0.03! and the initial point of the respons
system is~0.1,26.0,0.03!.

FIG. 2. Larger sub-Lyapunov exponentl versus weightk of
adjusting parameters in the Ro¨ssler system. Usez as drive variable.
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213.0 and 17.0. This means thatx2c is negative in most
regions of the trajectory. In other words, Eq.~7c! is stable in
most regions of the trajectory. So we only need to consi
Eqs.~7a! and~7b!. Figure 3 shows the result. Obviously, Fi
3 is similar to Fig. 1.

B. Lorenz model

The Lorenz system

ẋ5s~y2x!, ẏ5gx2y2xz, ż52bz1xy. ~15!

Let z be the drive variable and (x,y) the response system
and adjust the parameterg as

g5 ḡ 2e~y2yap!, ~16!

where ḡ is the nominal value of the parameterg and the
meanings ofy,yap are the same as in Eq.~9!. The Jacobian
of the response system is

S 2s2l s

g2zap 212exap2l
D 50. ~17!

With l1,2,0 we have

exap. ḡ 2zap21. ~18!

According to Ref.@1#, we sets510, b58/3, andg560.
Figure 4 is the result when we sete5(602zap)/xap when
uxapu.0.1 ande50 whenuxapu<0.1. Noting

e5H ḡ 2zap211k

xap
if uxapu.0.1

0 otherwise,

~19!

we get the larger sub-Lyapunov spectra as in Fig. 5.
For the case of no drive variable, we also adjust the

rameterg as in Eq.~16!. Substituting Eq.~16! into Eq. ~15!,
we get its Jacobian matrix

J5S 210.0 10.0 0

60.02zap 212exap 2xap

yap xap 2
8

3

D . ~20!

FIG. 3. Synchronization of Ro¨ssler system in the case of n
drive variable. The initial point is the same as in Fig. 1.
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Making the three eigenvalues of Eq.~20! become negative
from Eqs.~4! and ~6! we get

e5H 1 if xap.1

21 if xap,21

0 otherwise.

~21!

Figure 6 shows the result. Comparing Fig. 6 with Fig.
one can see that the effect of synchronization in Figure
better than that in Fig. 4. This means that the case of no d
variable is sometimes better than having a drive variable

IV. EFFECTS OF NOISE

To test whether this method can be used in experime
we now study the effect of noise. In this section we consi
Gaussian white noisej having a zero mean and standa
deviation equal to one, generated by using the Box-Mu¨ller
method@15#. Here we discuss only the case of no drive va
able and introduce additive noise in the form

x85x1rj, ~22!

where r denotes the intensity of external noise andx the
variable of the response system. This noise is applied at e
Runge-Kutta integration step. Figure 7 shows the result. F
ure 7~a! represents the case of the Ro¨ssler system with

FIG. 4. Synchronization of the Lorenz system usingz as the
drive variable and subsystem (x,y) as the response system at t
parameterss510, g560, andb58/3. The initial point of the driv-
ing system is~2.0,20.0,10.0! and the initial point of the respons
system is~20.0,10.0,30.0!.

FIG. 5. Larger sub-Lyapunov exponentl versus weightk of
adjusting parameters in the Lorenz model.
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r55.031023 and Fig. 7~b! the case of the Lorenz system
with r51.031022. From this figure one can see that th
effect of adding noise is to weaken the synchronization. T
effect becomes more and more intense as the level of noi
increased until synchronization is completely lost.

V. CONCLUSION

In conclusion, we have shown that the synchronization
a chaotic system can be implemented by adjusting the
rameter of the response system. This method is mainly u
in the case in which the synchronization cannot be imp
mented by the method of Ref.@1#. The operating range of the
method can be determined by using the Routh-Hurwitz
teria. The method works if the largest sub-Lyapunov exp
nent of the response system is negative. To avoid large
rameter changes, we let the response system run freely w
the required parameter change is large.

FIG. 6. Synchronization of the Lorenz system in the case of
drive variable. The initial point is the same with Fig. 4.

FIG. 7. Synchronization of no drive variable in the case of ad
ing noise. ~a! Rössler system with the intensity of nois
r55.031023 and ~b! Lorenz system with the intensity of nois
r51.031022.
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We point out in particular that our method can be used
the case where there is more than one positive sub-Lyapu
exponent of the response system. Reference@10# pointed out
that in controlling chaos, to stabilize the chaos of high
order, multivariable control has to be used. The minim
number of controlled variables has to be equal to the num
of positive Lyapunov exponents of the unperturbed syst
From our numerical simulation we know that this is not tr
n
ov

r
l
er
.

in synchronizing a response system. On the other hand,
method is robust against noise.
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