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We discuss a general approach for chaotic synchronization of dynamical systems that is based on adjusting
the response-system parameter. Numerical simulation shows that this method is robust against external noise.
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[. INTRODUCTION allows us to recover the information signal exactly.
Reference[1] gives a listing of the various subsystems
Since 1990 chaos synchronization has been a topic ¢ind driving components for the Lorenz andsRler systems
great interest. Pecora and Caridl] considered how identi- @nd their sub-Lyapunov exponents; see Table I.
cal or almost identical chaotic systems can be synchronized F'om this table we know that the Bsler system cannot

by a chaotic reference signal so that the two systems follo)€ Synchronized when one chosgsz) or (x,y) as the re-
the same chaotic orbit. He and Vaidj2] showed how this >PONS€ system because it has positive sub-Lyapunov expo-

synchronization can be understood in many representativach > for the Lorenz system, the response systey) (can-

by th ist f a alobal L functi f th fot be synchronized. If one can change the positive sub-
cases by the existence of a global Lyapunov function o er_yapunov exponents into negative ones, then the
difference signals.

. . .fsynchronization of the response system can be implemented.
USl_JaIIy two dynamical systems are called synchronized References10,11] use a small feedback perturbation to
the distance between their states converges to zero fofange the positive sub-Lyapunov exponents into negative
t—o. Recently[3,4], a generalization of this concept for gnes and implement the synchronization.
unidirectionally coupled systems was proposed, where two Referencd12] uses a nonlinear feedback to do the same
systems are called synchronized if a function relation existshing. In this paper, we present two approaches to implement
between the states of both systems. On the other hand, Refie synchronization of response systems that cannot be syn-
[5] points out that when all exponents are negative, excepthronized in[1]. One changes the positive sub-Lyapunov
for a few that take a zero value, one may find cases in whiclkexponents to negative by both using the drive variable and
the copy of the subsystem reproduces the original despite thadjusting the parameter of the response system, or only by
fact that the distance between the two subsystems does nadjusting the parameter of the response system. The adjust-
converge to zero. A zero conditional Lyapunov exponenting parameter range is given by calculating the sub-
would mean that the distance between the drive and respon¥apunov spectra. It is necessary to point out that our
remains constant on average. It allows other possibilities thadhethod is different from Lai and Grebogi's meth#i3],

may be of interest from the scientific and technical points ofWhich is based on the idea of controlling chaos by Ott, Gre-
view, for example, the amplification of the drive attractor 03I, and Yorkd14]. Our method applies the Routh-Hurwitz
and the shift of it to a different region of phase space. stability criterion to determine the variation of the parameter.

One possible use of the ability to synchronize chaotic sys-
tems is in secure communicatiof]. A sender of informa-
tion might add a very large chaotic component to the Consider a genaral dynamical model that displays chaotic
information-containing signal, thus masking the informationbehavior:
in the signal from any third party who intercepts it. Another
way [7] of using chaos in communication is to control the
dynamics of a chaotic oscillator so that it follows a given
sequence in its symbolic dynamics. Since this sequence Cafstem
be controlled, it can be used to transmit information. Re-

II. METHOD

TABLE I. Subsystems and driving components for the Lorenz
and Rasler systems and their sub-Lyapunov exponents.

Drive  Response  Sub-Lyapunov exponent

cently, Kocarev and co-workeiis$,9] presented a general Rossler X (y,2) (+0.2,-8.89)
approach for chaotic synchronization of dynamical systemsa=0.2,b=0.2 y (x,2) (—0.056;-8.81)
The basic idea of the synchronization approach consists in @&9.0 z (x,y) (+0.1+0.7
decomposition of a givefchaotig system into an active and Lorenz X (y,2) (—1.81,-1.86)
a passive part, where different copies of the passive pag=10,b=8/3 y (x,2) (—2.67~9.99)
synchronize when driven by the same active component,=60.0 z (x,y) (+0.0108:-11.01)

This approach improves the encoding-decoding schemes and
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xi=fi(x,a) i=1,...n, (1) ax+1>0, Ax>0, 6

Whereai is the parameter of system ane=3. Equation(]_) WhereAi(al, . ,ai) are the so-called Hurwitz determinants
is now taken as the driving system. One of the system VariOf orderi. These conditions are referred to as the Routh-
ablesx; may be chosen to be a drive signal, while the re-Hurwitz stability criteria. From these criteria we can deter-
maining variables can be dup"cated as a requidg'gen) mine the control Coefficienti . We give some examples to
system. The global system consists of both the driving an@xplain the process of synchronizing in detail.

the driven systems, linked by the drive signal. If we usas

the drive variable, the response system consists of . NUMERICAL EXPERIMENTS

X1, - Xj—1,Xj+1s - - - Xn. Generally speaking, the eigen-
values of the Jacobian matrix of the response system cannot 3
all be negative, so the behavior of the response system can- For the Rasler system

not always be synchronized with that of the driving system )

by Pecora and Carroll's methdd]. To solve this problem X=-y—z, (73
we adjust the parameter of the response system as

A. Rossler model

o y=x+ay, (7b)
8= a;— €(Xi — Xiap) 2 .

o z=b+2z(x—c) (70
wherea; is the nominal value o8;, ¢; is the control coef- . . _
ficient, ; is the orbit of the response system, agg, is the ~ We consider as the drive variable; then the response system
orbit of the driving system. The eigenvaluag¢x) of the IS
Jacobian matrix of the response system satisfies . )
X=—y—2z, y=x+ay. (8)
(?fi n (?f, (9ai

L s(x
oXy  da; IXy ik ( ap)

=0 (i,k=1,...n;i,k#]), Let
)

where\ () is related to the trajectory of the driving sys- — . ,
tem, 8, is the Kronecker delta function, anaf,/dx, and Wherea is the nominal value of the parametery,,, is the

(4f;192;) (9, 1a%,) are evaluated at=x,, and ai=a_i.We aperiodic orbit of drive system, andis the orbit of response

know that the Lyapunov exponent that represents the Chars_ystem_.When synchronization is implementgds ya, and

acter of the system is a long time average quantity along the = @. According to Ref.[1], we seta=b=0.2 and
orbits of the system. If we choose a suitabldn Eq. (2) so  ¢=9.0. The Jacobian of the response system is
that all theh (x,p) along the trajectory are negative, the sub- ( N 1 )

a=a—e(y—Yap), ©)

Lyapunov exponents of the response system will be negative.
Synchronization can be achieved.

For the case of no drive variable, the response system has
the form of Eq.(1). Now we also adjust the parametrof ~ Where is the eigenvalue of the Jacobian of the response

_ =0, 10
1 a-y,pe—\ (19

the response System as in E8): then Eq.(3) becomes system. By requiring\; ,<<0, one has
ot atoa 4 _2ta 11
e T e KA =0 (k=L ), @ A ”

The guestion is how we choose a suitaglén Eq. (2) sothat  To avoid too largee, we let the response system run freely

all the A (X,p) of Eq. (4) along the orbits become negative. when|y,,|<0.1, that is,
The problem of determining the rookgx,,) of Eq. (3)

whenn=4 and the roots\(x,,) of Eq. (4) whenn=3 can 2+atk

become tedious at best. Fortunately, what is required is not €= Yap

these roots, but simply the region gfin which all the roots 0

A (Xap)<0. The answer to this problem is well known and

does not require a knowledge of the rod{,p). The char-  Herek,>0 is the adjusting parameter. In our synchronizing,
acteristic equation(3) or (4) is a polynomial equation of e setk,;=0.1; the initial point of the drive system i§.0,
ordern in A, —10.0,0.03 and the initial point of the response system is
(0.1-6.0,0.03. The driving and response systems have
been integrated by using a stable fixed-step fourth-order
Runge-Kutta method with a step size ©£0.01 time units.
Figure 1 shows the result of synchronization. To determine
the range of the adjusting paramekgr we now investigate
an>0, An.,>0 (k=0,1,...) the larger sub-Lyapunov exponent spectra of the response
system. The sub-Lyapunov exponenték) are defined by
or variational equations of the response system

if |y..|>0.1
Y apl 12

otherwise.

ag\"+a\"" 1+ ... +a,=0 (apy=1). (5)

A necessary and sufficient condition for all roots of Eq.
(5) to have negative real parts is that
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FIG. 1. Synchronization of the Reler system using as the
drive variable and the subsystem,y) as the response system at
the parametera=b=0.2 andc=9.0. The initial point of the driv-
ing system ig5.0,—10.0,0.03 and the initial point of the response
system is(0.1,—6.0,0.03.

FIG. 3. Synchronization of Rssler system in the case of no
drive variable. The initial point is the same as in Fig. 1.

—13.0 and 17.0. This means that-c is negative in most
regions of the trajectory. In other words, Edc) is stable in
most regions of the trajectory. So we only need to consider

OX=—20y, oOy=ox+ady, (13 Egs.(7a) and(7b). Figure 3 shows the resuit. Obviously, Fig.
3 is similar to Fig. 1.
1 Jx+ 62
A=Ilim—n Y (19

towt J%X(0)+ 8%y (0)

Here 6x=x—X,, and dy=y—y,, define the deviations of
the response system from the aperiodic orbit, determined by
the drive system. The necessary and sufficient condition of

synchronization of the two systems i§<0. Denoting | et z be the drive variable andx(y) the response system
e=kl/yap when|y,p|>0.1 ande=0 when|y,,|<0.1, we get  and adjust the parameteras
the larger sub-Lyapunov spectrum as in Fig. 2. It is negative

whenk varies from 0.1 to 100, so the synchronization can be
implemented in this range. Comparing this range with Eg.

(11), we can find that they are different. The range deterwherey_is the nominal value of the parameterand the

mined by Eq.(11) is contained in that of Eq14) which is  meanings 0f/,Yap are the same as in E¢). The Jacobian
less than zero. This is because Ebl) needs every step of of the response system is

the response system to approach the aperiodic orbit of the
drive system, while Eq(14) is an average effect over long

B. Lorenz model

The Lorenz system

X=0(y—X), Yy=yX—y—Xxz, z=-bz+xy. (15

Y= y_f(y_yap)y (16)

—0—N\ o

times. It confirms that all the sub-Lyapunov exponents of the _, et — =0. a7
range determined by the Routh-Hurwitz criteria are negative. Y~ %ap €Rap
For the case of no drive variable, we should find the ranggy;i, » . .<0 we have
of adjusting parameter by Eq&l) and(6). But in this special 12
example, we can still use E(L1) to implement the synchro- Xon> 7 —Zao—1 (18)
ap ap .

nization for the following reason. Checking the trajectory of

the R@sler system in phase space, we find that the variablgccording to Ref.[1], we seto=10, b==8/3, and y=60.

z is always positive and the variable varies between Figyre 4 is the result when we set (60— Zap)/Xap When
|Xap/>0.1 ande=0 when|x,,/=<0.1. Noting

-0_2 LA RLLY | LERLELRRLLL | Trron __Z _1+k
TT 2R i x> 0.1
€= Xap (19)
0.3 - 0 otherwise,
< we get the larger sub-Lyapunov spectra as in Fig. 5.
-04 . For the case of no drive variable, we also adjust the pa-
rametery as in Eq.(16). Substituting Eq(16) into Eq.(15),
we get its Jacobian matrix
_05 TR TTIT BRI R T B ST
0.1 1 10 100 -10.0 10.0
k
60.0-z,, —1—€Xy, —X
J= ap ap awl (20)
FIG. 2. Larger sub-Lyapunov exponentversus weightk of y X _ §
adjusting parameters in the &ler system. Use as drive variable. ap ap 3
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FIG. 4. Synchronization of the Lorenz system usings the
drive variable and subsystemx,fy) as the response system at the
parametersgr=10, y=60, ando=8/3. The initial point of the driv-
ing system is(2.0,20.0,10.pand the initial point of the response ,=50x10 2 and Fig. 7b) the case of the Lorenz system
system i5(20.0,10.0,30.0 with p=1.0x10"2. From this figure one can see that the

. , _ effect of adding noise is to weaken the synchronization. This
Making the three eigenvalues of EQO) become negative, etfect becomes more and more intense as the level of noise is

from Egs.(4) and (6) we get increased until synchronization is completely lost.

FIG. 6. Synchronization of the Lorenz system in the case of no
drive variable. The initial point is the same with Fig. 4.

1 if xgp>1 V. CONCLUSION

e={ 1 if Xpp=<—1 (22) In conclusion, we have shown that the synchronization of

0 otherwise. a chaotic system can be implemented by adjusting the pa-
rameter of the response system. This method is mainly used
Figure 6 shows the result. Comparing Fig. 6 with Fig. 4,in the case in which the synchronization cannot be imple-
one can see that the effect of synchronization in Figure 6 isnented by the method of RéfL]. The operating range of the
better than that in Fig. 4. This means that the case of no drivenethod can be determined by using the Routh-Hurwitz cri-
variable is sometimes better than having a drive variable. teria. The method works if the largest sub-Lyapunov expo-
nent of the response system is negative. To avoid large pa-
IV. EFFECTS OF NOISE rameter changes, we let the response system run freely when
the required parameter change is large.
To test whether this method can be used in experiments,
we now study the effect of noise. In this section we consider |
Gaussian white nois¢ having a zero mean and standard 4 (a) 7
deviation equal to one, generated by using the Boxiéfu
method[15]. Here we discuss only the case of no drive vari- -
able and introduce additive noise in the form

y-y
o

X' =x+pé, (22)

where p denotes the intensity of external noise andhe
variable of the response system. This noise is applied at each 0

Runge-Kutta integration step. Figure 7 shows the result. Fig- 2t5 50
ure 7@ represents the case of the $Rter system with
I
20 | (b)
> 10 | -
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FIG. 7. Synchronization of no drive variable in the case of add-
ing noise. (@) Rossler system with the intensity of noise
FIG. 5. Larger sub-Lyapunov exponentversus weightk of p=5.0<10"2 and (b) Lorenz system with the intensity of noise
adjusting parameters in the Lorenz model. p=1.0x102
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We point out in particular that our method can be used inn synchronizing a response system. On the other hand, our
the case where there is more than one positive sub-Lyapunavethod is robust against noise.
exponent of the response system. Refer¢t6¢ pointed out
that in con'troll'lng chaos, to stabilize the chaos of hlgher ACKNOWLEDGMENTS
order, multivariable control has to be used. The minimal
number of controlled variables has to be equal to the number This work was supported partially by the National Sci-
of positive Lyapunov exponents of the unperturbed systemence Foundation of China and the Science Foundation of
From our numerical simulation we know that this is not true China Academy of Engineering Physics.
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